
Functional
Can pass functions as argu-
ments of other functions.
Here, we pass the
makeCube() function as an
argument to the “rotate”
and “scale” functions.

Kiwi Geometry Operations

Lathing
I implemented an algorithm
for generating parametric
lathe meshes from equa-
tions. We iterate “y” from 0 to
1 and “t” from 0 to 2 pi and
use the return argument of
the function to generate the
mesh.

Displacement
Kiwi support arbitrary dis-
placement functions that
can operate on vertices or
normals. This involves recal-
culating normals for the frag-
ment shader.

Attaching
Oftentimes, models are
created by “attaching”
primitives to one another.
Instead of requiring the user
to remember a complicated
series of transforms, the “at-
tach” function allows a user
to specify a face on a model
to attach to, adopting the
local transforms of the face.

Kiwi Randomization

Choose
Users can define a “choose”
block, where each “option”
in the block can have a
probability associated with it.

OR

Perlin Noise Displacement
I implemented a vertex
shader that uses Perlin Noise
to displace a mesh. This al-
lows one to create interest-
ing, randomize displacement
maps.

Vertex Shader Displacement
 One of the most powerful features of Kiwi is the ability to create GLSL vertex shaders
directly in Kiwi. In games, meshes have to be low-polygon so that they can be rendered
at an adequate framerate. Web-games in particular need to use extremely low-polygon
meshes to guarantee performance on all computers. One technique that is used to simulate
high-polygon meshes is to encode mesh detail in the vertex shader, and allow the GPU to
apply displacement functions to the vertices.

 To be able to accomplish this in Kiwi, I gave Kiwi the ability to compile directly into GLSL.
This way, a game developer can use Kiwi to program a procedural vertex shader. For, ex-
ample, the Kiwi code:

compiles into the corresponding GLSL code:

 This code is automatically inserted into the appropriate mesh’s vertex shader to transform
vertex position. These vertex shaders can also be appended to one another in a sequence.
Thus, a developer can encode an arbitrarily complex vertex shader in Kiwi.

float PI = 3.141592653589793;
float EPS = 0.001;
for (float i = -10.; i < 10.; i++) {
 if (((i)*(x))<(0.01)) {
 x = ((0.8)*(sin((PI)*(x))));
 }
}

Complex Meshes
 When combined, the geometry and randomness operations allow a user to create
procedural meshes of arbitrary complexity. Here are some examples of meshes that I made,
each of which takes only a few lines to code:

Christmas Tree

Jenga

Flowers

Buildings

Hair

Exportable
 Models can be exported to .stl format
and used in a variety of applications, such
as game engines, 3d printers or 3d software
packages. Figure 4 shows a rendering of
the one of the Christmas trees.

Figure 4. A rendering of a Kiwi-generated Christmas tree.

